IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than bluc or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La rellure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-Être uniques du point de vue bibliographique, qui pauvent modifier une image reprojuite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolordes, tachetées ou piquées
Pages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaireOnly edition avaliable/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcles par un feuillet d'errata, une pelure, etc., ont été filmébs à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the genarosity of:

Library of the Public
Archives of Canada

The images appearing here are the best quailty possible considering the condition and legibillty of the original copy and in keeping with the filming contract specifications.

Original copias in printed paper covers are filmed boginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed becinning on the first page with a printed or illustrated impression, and ending on tha last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit gráce à la générosité de:

La bibliothéque des Archives publiques du Caneda

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de ia netteté de l'exemplaire filmb, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture ell papier est impriméa sont filmés en commençant par lo premiar plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmes an commençant par la première page qui coriporte une ampreinte d'impression ou d'illustration et en terminant par la dernidre page qui c'smporte une telie emprainta.

Un des symboles suivanits apparaitra sur la derniére image de chaque niterofiche, seion le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, stc., peuvent être filmés it des taux de réductior differents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

TIME-RECKONING

1
Quventietf Oentızy,

Ty
SANFORD FLEMING,
C. M. G., LI. D., C. E ETC

From the SMITHSONIAN REPQRT For 1886.

WASIHNGTON
1889.

TIME-RECKONING

Toventieth Centuzy,

玉ฐ

SANFORD FLEMING,

C. M. G., IJ. D., C. E., Erc.

From the SMITHSONIAN REPORT For 1886.

WASHINGTON, 1889.

889
 (5)

TIME-RECKONING FOR TEE TWENTIETH CENTURY.

By Sanford Fleming, C. M. U., LL. D., C. E., etc.

During the early historical ages much chronological confusion prevailed, and it is largely owing to this cause that the annals of the centuries which preceded the Christian era are involved in obscurity. Tho attempt to end this general disorder was mado by Julius Cæsar, who established regulations with respect to the divisions of time and the mode of reckoning to be followed. The Julian Calendar was introduced forty-six years before Christ. It continued unchanged until the sixteenth century. In 1582 recognition was obtained of the errors and defects which the circumstances of the period had made manifest and which demanded correction. Pope Gregory XIII accordingly directed the reformation of the calendar and establisted new rules of intercala. tion. These two epochs are certainly the most important in the history of our chronology.

Three centuries have passed since the reform of Pope Gregory. New continents have been opened to civilization and immense regions then wholly unknown to Europe have been peopled by races busied in commerce and skilled in the arts, and characterized by unwearied energy aud determination. In these three hundred years a marvellous succession of inventions bearing upon h uman activity and progress has been introduced, and the character of nearly every requirement of life bas undergone change. The discoveries and inventions which bave marked this period have produced new conditions of society ; and our minds have received an impulse which leads to investigation wherever need of im. provement appears to be demanded. It is within the last half century more especially that the bounds of human knowledge have been so wonderfully extended; perhaps in the whole world's annals no fifty years have witnessed such a marvellous revolution. The triumphs of applied science in facilitating intercourse between men and nations have given an extraordinary impulse to general progress, lint in so doing they have developed imperfections in our system of time-notation which previously were unknown, and it is no longer possible to escape the conviction that we have reached a stage when further reform is demanded as a requirement of our condition. The necessity for a reform in time-reckoning is recoguized by the highest authority, and has obtained a hold of public opinion. The President of the United States, General Arthur, at the request of Congress, antzoritatively took proccedings to bring the subject prominently to the attention of the world. After prolonged diplomatic correspondence with the Governments of
foreign powers, he invited delegates from all nations to a scientific conference at Washington in which the subject should be fully considered.

The conference met in the autumn of 1884. Twenty.five nationalities were represented. The proceedings extended over the month of October, and they resulted in the almost unanimous adoption of seven resolutions bearing upon time-reckoning.

As no records can be in accord unless a common starting point be agreed upon from which compatations are to be made, the first resolutions had reference to the determination of an initial meridian. The meridian passing through Greenwich was selected.

In the fourth and fifth resolutions the conference laid down the follow. ing important priuciples:
IV. "That the conference proposes the adoption of a universal day for all purposes for which it may be found convenient and which shall not interfere with the use of local or other standard time where desirable."
V. "That the universal day is to be a mean solar day; is to begin for all the world at the moment of mean midnight of the initial meridian, coinciding with the civil day and date of that meridian, and is to be counted from zero to twenty-four hours."

The opening of the nationa! Congress at Washington shortly followed the international conference. The President regarded the importance of the proceedings to be such as to call for special mention of them in his annaal message. General Arthur thus expressed himself on the subject: "The conference concluded its labors on the 1st of November, having with substantial unanimity agreed upon the meridian of Greenwich as the starting point whence longitude is to be computed through one hundsed and eighty degrees eastward and westward, and upon the adoption, for all purposes for which it may be found convenient, of a universal day, which shall begin at midnight on the initial meridian and whose hours shall be counted from zero up to twenty-four."

There was no exaggerated importauce in these allusions, for the conclusions of the conference are productive of most important results. They make provision for terminating all ambiguity in hours and dates and for establishing throughout the world, free from national susceptibility and caprice, perfect uniformity in reckoning time. Some years may eiapse before the new notation becomes the one recognized mode of reckoning; but when it shall have been generally accepted in the practice of daily life, it is calculated to sweep away the difficulties now experienced, and it will add greatly to the general convenience of civilized man.

One of the first practical efforts to direct public attention to the rapidly growing necessity for a comprehensive reform in time-reckoning can be found in a paper published in the Transactions of the Canadian Institute, Toronto, for the session of 1878-79.* This paper adduces in

[^0]support of its argument many pertinent facts, and points out that the gigantic systems of railways and telegraphs which in modern times have been established in both coutinents have developed social and commercial conditions which never previously existed. These conditions hre so affected the relations of time and distance as to establish the fact that our inherited system of notation is defective; that it is inconvenient to men of business; that it produces confusion and frequently results in loss of life, and leads to other difficulties; that under the circumstances which have followed the substitution of steam for animals as a motive power, the ancient usages as retained in our notation of hours and dates are gencrally inappropriate. Moreover, the use of the telegraph in our daily lives practically subjects the whole surface of the globe to the observation of civilized communities in each individual locality. It leaves no interval of time between widely separated places proportionate to their distances apart. It pratically brings into elose contact the opposite sides of the earth where daylight and darkness prevail at the same period. By this agency noon, midnight, sunrise, sunset, and the whole range of intermediate gradations of the day, are all observed and recognized at the same moment. Thus in matters out of the domain of local importance confusion is developed and all count of time is thrown into multiplied disorder.

Again, under the usages now observed, a day is assumed to begin twelve hours before-and end twelve hours after-the sun passes the meridian of any place. As the globe is constantly revolving on its axis, a fresh meridian is every moment coming under the sun; as a consequence a day is always beginning somewhere and always ending somewhere. Each meridian around the cirenmference of the sphere has its own day, and therefore it results that there are, during every diurual revolution of the earth, an infiuite number of local days all beginning within a space of twenty-four hours and each continuing twenty-four honrs. These days overlap each other, but they are as perfectly distinet as they are infinite in number. While a day is nominally twenty four hours in length, as a matter of fact forty-eight hours elapse between the first beginning and the last ending of every week day. Taking the whole globe into our view, Sunday actually commences in the middle of Saturday and lasts until the middle of Monday. Again, Saturday runs into the middle of Sunday, while Monday begins twenty four hours before Sunday comes to an end and continues twenty-four hours after Tuesday commences. Similarly for all the days of the week, as time is now reckoned. Except those on the same meridian, there are no simultaneons days on the earth's surface, and as the different days are always in the various stages of advancement, discrepancies and errors must necessarily result in assigning the preciso period when an event takes place. The telegraph may give the exact local time of an occurrence, but the time so given must be in disagreement with local time on every other meridian around the globe. An event occurring on any one day
may on the instant be announced in a locality where the time is that of the previous day, and in another locality where the time is that of the following day. About the period when the mouth or year passes into another month or year an occurrence may actually take place, according to our present system of reckoning, in two different months or in two different years; indeed, there can be no certainty whatever with regard to time, unless the precise geographical position be specilled as an essential fact in connection with the ovent described. Under these circumstances it must be conceled that our present system of notation is most defective, certainly it is unscientific, and possesses every element of confusion; it proluces a degree of ambignity which, as railways and telegraphs become greatly multiplied, will lead to complications in social and commercial affairs, to errors in chronology, to litigation in connection with succession to property, insurance, contracts, and other matters; and, in view of individual and general relationships, it will undoubtedly act as a clog to the business of life and prove an inc , -s. ing hindrance to buman inte. nurse.
The problem to be mastered is to put an end to this confusion. In order to do so, it is important that we should endeavor to form correct ideas of time and its attribites.

According to the ordinary usages which we follow, the time of any particular locality depends uponits position on the earth's surface; in other words, upon its longitude. The principle followed is that there is a separate time on every meridian around the circumference of the globe. Let us carry this theory to its logical conclusion. Take, by way of example, a hundred or a thousand meridians, each with a distinct and separate time. It will be conceded that what is true of one point on a meridian must be true of every point. A meridian line runs due north and south on the earth's surface from pole to pole; hence it follows that at the point where every meridian must converge we have the time of every meridian. That is to say, at the eartl's pole, a point common to every meridian, there are a uired or a thousanil different notations of time, each distinct and separate. The extreme absurdity of this hypothesis establishes beyond question that the premises are false; and it is in no way surprising that confusion and difficulty result from a system such as we possess, basel ou principles so erroneons.

We may here ask the question: "Why should time vary with every mile of longitude $9 "$ The answer comes, It is not possible to conceive more than a single unity of time in the whole universe. Time, which is "an infinite continuity in infinite space," resembles a mighty river, whose unvarying stream passes before us. Sucin a river is unchangeable, yet continuaily changing; volumes of water always advancing are replaced by new volumes in perpetual succession, and yet the river continues one and the same ever flowing unity. The passing stream of tine is much the same, and the problem presented to us is to keep a proper record of its flot. It is perfectly obvious that the principles which
should govern sliould be such as to secure complete accord in the detail of its admeasurement independently of locality. All peoples are concerned in the attainment of harmonious results, and therefore it is important that they should acquesce in the employment of the same unit of computation aud in counting the measurements from one common zero.

We lave not to look in vain for a convenient unit and the most perfect instrument for measuring the passage of time. The rotation of the earth on its axis is marked by complete uniformity of movement, and nothing is more certain than the recurrence of this diurnal phenomenon. Accordingly the earth itself supplies all our wants as a timekepper; in it we have at our command a perpeatal standard for the use and guidance of the eutire family of man.

Before, however, we can attain this end it is essential that mankind should come to an agreement ou the following points:

1. With respect to a zero from which the revolutions are to be counted.
2. The acceptance of a common subdicision and a common notation by which parts of revolutions will be known by all and receive universal recognition.

The importance of a definite understanding on these points is selfevident, for if each individual or group of inlividuals adheres to the pra "ee of observing time from different zeros and each maintaius separa reckonings of it, the ontcome must be general confusion, such as. we now experience.

If in imagination we place ourselves at one extremity of the earth's axis, we shall find ourselves in a pect arly favorable position, free from all local influences, for observing the revolutions of the globe. At no other point in the northern hemisphere are the conditions the same. A. spectator standing at the north pole would have neither east uer west; in whatever direction he might cast his eyes he would look towards the south; he would no longer sce the daily return of sunrise and sunset; the sun when visible would more, or seem to move, in a horizontai line, and its path would encircle the earth parallel to and not far distant from the horizon. Under such circumstances it would not be possible to note the diurnal revolutions of the earth by the rising or setting of the sun, or by the sun's greatest altitude at middata, or by his southern position in the heavens. As the passage of time can only be marked by events, what course could be followed? Obriously it would be necessary to take special means to observe the earth's diurual rotation, and the method most readily to suggest itself would be to select a conspicuons object near the horizon and according to this object observe the sun's passage over it. The object so selected would become the zero of time, and the interval between two successive solar passages pould be the period occupied by a revolution of the earth. If from zero the horizon be divided into a serice of ares of 15° each the whole circle around will consist of twenty-four divisions. If each of the division points be
numbered from zero in the direction contrary to the motion of the earth or ôwards the right, and in imagination the numbers be placed in a conspicuous manner against the sks, the spectator will have within his range of vision a great dial-plate on which as it revolves the vertical sun will continually point to the passing hours. With the twents-four division points so numbered around the circle of the horizon, it is obrious that every hour in the day, and equally the smaller divisions of time, will invariably be manifested by the solar passage.
As the imaginary point of observation, the north pole, is common to every meridian, the hours and minutes indieated by the great polar chronometer will be equally common to every locality on the surface of the globe. Whatever the longitude, the solar passage will be the index of time. Two successive passages at zero will complete an interval of twenty four hours; but it will not be a day in the ordinary sense, as an ordinary d:y is a local phenomenon in no two longitudes identical.* To distinguish this new interval of time common to the whole world from the infinite number of local days at present recognized it has been suggested to term it the "Cosmic Day," or some distinctive appellation by which it may be known.
Necessarily the zero point must be arbitr arily selected according to convenience, and any zero whatever, other things being equal, would serve the purpose which we have in view. We have only to assume the zero so selected to coincide with the Antiprime Meridian determined by the Washington Conference, and the Cosmic Day will be identical with the Universal Day, established under the same authority. 1 Uuiversal or Cosmic Day may therefore be defined as the interval of time between two succeeding solar passages at the Autiprime Meridian common to all nations.

In his recent discourse on the subject at the Royal Institution, London, the astronomer royal for Great Britain, Mr. Christie, expressed a preference for the term "World Time" to designate this new measure of duration. It has been terned "Cosmic Time" by varions societies and individuals; but the name is of secondary importance, if it be understood that the new measure of time is equally related to every locality. By its very nature, Cosmic Time, or by whatever name it may be known, must coincide with some one of the multiplicity of existing times. The decision of tha Washington Conference cansed it to correspond with Greenwich Civil Time. Greenwich time is the local time of Greenwich. Cosmic Time is a new and an entirely different conception; it is the time of the world common to every nation. "Cosmic" and "Greenwich" time are identical fortuitously, but the expressions imply two totally different ideas, and a proper deference to national sensitiveness suggests the good taste and expediency of distinguishing the two ideas by different terms. Some distinctive name is undoubtedly called for, until the

[^1]period arrives when the unification of time will be complete. In the not far distant future it may become equally as unnecessary to speak of "Solar," "Lunar," "Astronomical," "Civil," "Nautical," "Local," "Cosmic," or "World" time, as at present it is unnecessary to attach these or other distinctive appellations to "Space." The simple expression "Time" may then become sufficient for all purposes.

1 Longitude east and west from Greenwich.	2 Longitude west from time zero.	3 Longitude by hour meridians.	4 Cosmic Time at mean solar passage.
180 antiprime meridian..	-	Number.	Hour.
165 east	15	1	1
150 east	30	2	2
135 east	45	3	3
120 east	60	4	4
105 east.	75	5	'5
90 east	90	6	6
75 east	105	7	7
60 east	120	8	8
45 east	135	9	9
30 east	150	10	10
15 east.	165	11	11
0 the prime meridian ..	180	12	12
15 west	19.5	13	13
30 west	210	14	14
45 west	225	15	15
60 west	240	16	16
75 wost	255	17	17
90 west	270	18	18
105 west	285	19	19
120 west	300	20	20
13., west	315	21	21
150 west	330	22	22
165 west	345	23	23
180 antiprime meridian ..	360 and 0	0 and 24	24 and change.

*Zero of Cosmic Time and of Longitude.
The relation between time and longitude is important. If longitude be reckoned by hour meridians, as in the second and third columns of the table, that is to say, numbered continually westward from the Antiprime Meridian, which is the true time zero, the inhabitants of every individual locality in whatever longitnde will daily have an opportunity of rogulating time by the great natural standard of measurenient. The longitude of the locality being known, at mean solar passage the time will invariably and precisely agree with the longitude. Conversely, the time being known, the longitude of the place will be in sirict agreement with time at the moment of mean solar passage.

A reference to the following plate will make it clear that the solar passage will be the invariable index of Cosmic Time.

Fig. 1 shows the relative position of sun and earth at the initial instant of the Cosmic Day, that is, at the moment of mean solar passage on the Antiprime Meridian adopted by the Washington Conference.

Fig. 2 gives the position when the earth has made a sixth of a revolation and four hours have elapsed. The solar passage at this stage is on the four-hour meridian.

Fig. 3. When the earth has made a hird of a revolution and occupied a period of eight hours, the solar passage occurs on the eight-hour ineridian.

Fig. 4. When the earth has made half a revolution and twelve hours have elapsed, the solar passage is at this stage on twelve-hour or Prime Meridian.

Similarly for every other meridian, and thas the precise relation between Cosmic Time and longitude is definitely established.

It may be said that Cosmic or Universal Time is accepted in science, but its adoption in ordinary life can only be gradually and perhaps with cifficulty effected. It is tot to be looked for that a change so marked, involving a revolution of thonght in some of our sociai customs, can be speedily introduced, however desirable it may be in the puklic interest. There is a class of men who habitually express their custempt for what they designate as "new.fangled notions," and who refuse to go out of sight of old land marks. The usages which we desire to supersede are certainly old, for they took their origin when our civilization was young. In those days it was a dogma that the earth had a flat surface, but as the belief that the earth is a plane is no longer invested with the authority of a truth, we may yenture to call in question the theory that each locality on its surface possesses an independent stream of time and is called upon to defend and maintain it. The human race is no louger confined within a narrow area. It has overspread the surface of the earth; in the Old and New Worlds it has grown, in some portions of their extent it is still growing, from an infantile condition to a state of man. hood. Are we not yet able to look beyond one individual horizon and eularge our range of vision so as to include a system which will satisfy the requirements, not of a locality, but of the whole globe 1

We are living in an age of intellectual aud social progress, when men are less fettered than our fathers were by the restraints of custom. On tho continent of North America extraordinary progress has already been made by an essentially practical people towards the adoption of a complete reform in time-reckoning. What is known as the Stand-arl-hour system, in itself in complete harmony with the principles of Cosmic Time, has been in common use for nearly three years, and it is generally recognized as an incalculable benefit to the whole community,

Throughout the United States and Canada we have outgrown the notion of isolating each locality by compelling it to observe a separate time notation. The Continent is divided into zones, each zone having the same time throughout its extent, based on a meridian which is a multiplo of alteen rlegrees from the Prime Meridian. Consequently the time of each zone varies exactly one hour from that of the adjoining zones. Thus all the variations of time which formerly were limited only by the number of towns and cities and localities which observed their own local time are reduced to the flve zones. Only at points whers the zones come in contact is there any exception to the common satisfaction which has resulted from the change. These are the ouly localities where we find the old-time difficulties, now so happily removed from every other section of the Continent. At such localities the diffculties must con-
H. Mis. $170-23$
tinue to be felt antil Cosmic Time comes into general use, for it is the only one remedy which can satisfy every requirement.

The Standard-hour system is an effective preliminary means for the introduction of universal tinee, and it is not confined to North America. In Sweden, as well as Great Britain, the principie is in common use. The Standard Time of Swedeal is based on the meridian ffteen degrees east of the prime meridian; consequently an hour in advanceof the Prime Meridian time. The time of Great Britain is that of the prime meridial itself.

The scheme of hour meridians can only be regarded as a provisional arrangement. It greatly lessens the difficulties experienced, but it does not wholly remove them. It is, however, an important practical step towards the general unification of time, as it brings the minutes and seconds into compicte agreement with the world's time wherever the system is adopted. The Astronomer Royal of Great Britain calls particular attention to the breadth of view evidenced by the managers of the Am. erican railways who were so largely instrumental in having this important step taken. "By adopting a national meridian as the basis of their time-system they might have rendered impracticable the idea of a nniversal time to be used by Europe as well as America. But they rose above national jealousies and decided to have their time-reckoning based on the meridian which was likely to suit the convenience of the greatest number, thas doing their utmost to promote uniformity of time throughout the world by setting an example of the sacrifice of human susceptibilities to general expediency."

There is one feature of time-reform alluded to by President Arthur in his message to Congress wbich promises before long to be accepted by the community. I refer to the proposal to count the hours from zero to twenty-four. The recent report of the special committee on Standard Time of the American Society of Civil Engineers (January, 1886) thus alludes to this branch of the sabject:
"This feature has the authority of the International Conference for its introduction. In iutelligent circles in Europe, particularly in Eng. land and in Russia, also at the antipodes in Australia, the proposal is reported to have been greeted with enthusiasm. The Astronomer Royal of England, Mr. Christie, has established at Greenwich Observatory a division of the great dial into twenty-four hours. In London and in other cities, public clocks have been also changed to accustom tho English public to this division of the day. Some newspapers in all their announcements adopt the change, and scientific sccieties give notce of the.. meetings in the same manner as this Society, according to the twenty-four-hour system.
"On this Continent there has been no uncertain sound. In the last annual report of the Committee it was stated that one hundred and sev-enty-one managers of railways in the United States and Canada had declared their readiness to abaudon the division of the day into half-days,
known as ante and post meridian, and to accept tie numeration of the hours in one series, from midnight to midnight, these managers having under their control some 60,000 miles of railway.
" During the past year the seed sown has been fructifying, and many who held back have been won over and have given their adhesion to the morement. Among the many important railways ready to co-operate, some appear to see no necessity for further delay, and desire to secare at once the adrantages which will result from the change. At this date it is publicly announced that the Canadian Pacific Railway Company have determined to adopt the 24 -hour system, and are actnally preparing to make the change at an eaily day.* Such proceedings can be accepted as indicating a proper appreciation of the reform which the American Society of Civil Engineers has advocated, and equally shows the discernment of those who direct the management of the youngest of the transcontinental railways. This practical commencement will, without a doubt, be speedily followed by other railway companies, and before long we may look for the 24 -hour system coming into general use. \dagger

There is undoubtedly a growing feeling in many quarters in favor of the 24 -hour system. It is reported to be used with great advantage on the whole of the cables and other lines of the Eastern Telegraph Com. pany, and its connections extending from England through Europe and the Mediterranean to Egypt, and from Egypt to South Africa, India, China, and Japan, Australia, and New Zealand.

It is a pertinent question to ask, what influence these various changes will have in preparing the public mind for another, and it may be said a final, change--the adoption of one uniform time in every longitude ? For it must be evident to the thoughtful observer that the movement

[^2]for reforming our time-system will not have attained its object until this oud be accomplished.
Those persons who have been in the habit of finishing their daily work at $\mathrm{C} p$. m . under the $\mathbf{2 4 - h o u r}$ system will end it at 18. Those who retired to rest at 10 or 11 p . m. will seek their beds at 22 or 23 . The idea that solar noon and 12 o'elock are one and inseparable has already been set aside throughout the United States and Canada; only on five me-ridians-the $60 \mathrm{th}, 75 \mathrm{th}, 90 \mathrm{th}, 105 \mathrm{th}$, and 120 th -is it beld to be 12 o'clock at the mean solar passage. In all other longitudes throughout North America the identity between solar noon and 12 o'clock has practically been swept away.
These modifications in the time reckoning must tend to remove the idea that there is seme necessary connection between the numbers of the hours and the position of the sun in each local firmament. The force of habit has heretofore associated noon with 12 o'clock, but in due time it will become obvious to every one that the hour of the snu's passage at any one locality may with as much propriety be distinguished by any one of the twenty-four numbers as by the now generally received number 12. So soon as this new idea comes generally to be accepted, so soon as it is understood that the numbers of the hours are arbitrary and conventional, it will not be difficult to take the final step in time reform and entirely supersede the present system by a notation which will give to mankind throughout the world simultaneous dates and hours and minutes.
The final step may appear to involve serious changes in much which concerns every individual, but it is not to be supposed that it will in any way interfere with the periods for labor, sleep, meals, or any ordinary usage. The one chauge will be in the numbers of the hours. In social affairs the regulating iufluence of daylight and darkness will always, as now, be paramount. The terms "noon" and "miduight" will continue to preserve their present meaning, although the numbers of the hours at which these periods occur will vary in each case according to longitude. Each separate meridian will have its own midnight hour distinguished from the miduight hours of other meridians by a distinetive number. So also with the noon hour, which, as already stated, will invariably agrees with the longitude of the place. It is the miduight hour in each locality which will constitute the initial timepoint to regulate the legal hours for opening and closing banks, registry, and other public offices. The midnight hour may be arbitrarily chosen and be established by statute as circumstances may demand. It will be held to be the local zero to govern the hours of business, working bours, the hours for attendance at church, at school, and at places of amusement, and generally to regulate all the social affairs of life. While the seven week days will practically remain unchanged in every longitude, the simple expedient of numbering the hours so that everywhere they will correspond with Cosmic Time will result in secaring the general uniformity to be desired. Thus it will be obvious that in all matters
celating to time, whether local or non-local, the same hours, minutes, and seconds will universally be observed at the same instant. In cases wher business men separated by long distances make contracts by telegraph, the engagements will be free from all ambiguity as to time. Both parties will be boand absolutely by the same notation.

The Cosmic Day is a new measure cf time entirely non-local. It will be held to be the date of the world, and the change of date will occur at the same instant in all longitudes. On the prime meridian the change of date will be at midnight; to the cast it will occur after midnight; and to the west of the prime meridian it will come before midnight. It will be one hour before or after midnight for every fifteen degrees of west or east longitude. Fortunately, in nearly all the important countrics on the surface of the globe, the change of date will oceur out of ordinary business hours.

It will thus be seerr that while the contemplated reform will interfere as little as possible with existing customs, it will result in giving to the human family around the globe concurrent dates and in making every division of time uniform the world over.

In the adoption of the new system, temporary inconvenience may arise, but it will be trifling in extent and not of long duration; and any momentary disadrantage should not be allowed to weigh against the bencfits to be secured to mankind for all future ages.

On the night of November 18,1883 , a noiseless revolution was effected throughout the United States and Canada. The hands of the clocks of some fifty millions of people were for the most part moved forward or backward in order to indicate the time of one of the five hour zones. The time now observed from the Atlantic coast to the Pacific varies with Cosmic Time, according to situation, from four to eight whole hours. In North America, therefore, the portion of the problem yet to be adjusted is easy of solution. As the minutes and seconds are alreally everywhere in agreement, the transition to universal uniformity of reckoning can be effected simply and with case. It will only be necessary to move forward the dial hands of the clocks an even number of hours, varying from four to eight, as each case may require, to bring the Continent into complete accord with the time of the world.

Wheu eventually it may become necessary to bring the time throughout all parts of North America to the world's standard, the transition may be effected by adjusting the clocks as follows:
I. Clocks.in the hour zones of the west meridians.
Meridian west. $\left.\begin{array}{l}60^{\circ} \\ 75^{\circ} \\ 90^{\circ} \\ 105^{\circ} \\ 120^{\circ}\end{array}\right\}$ will have to be moved forward $\left\{\begin{array}{l}4 \\ 5 \\ 6 \\ 7 \\ 8\end{array}\right.$

Similaly wherever the scheme of hour meridians be adopted the common reckoning may with equal ease be secured. To the west of the
prime meridian the clocks will require to be moved forward, to the east backward. In Europe, Asia, and Africa the change would thus be effiected :
II. Olocks in the hour zones of the east meridians.
$\left.\begin{array}{l}\text { Meridian east. } \\ 15^{\circ} \\ 30^{\circ} \\ 45^{\circ} \\ 60^{\circ} \\ 75^{\circ} \\ 90^{\circ}\end{array}\right\}$ will have to be moved backward $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \mathbf{5}\end{array}\right.$

Thus, for example, New Orleans, in the hour zone of the 90th meridian west, would have its clocks advanced six hours, while Calcutta, in the 90th meridian east, would have its clocks retardet six hours. By the same simple process of transition, every city and district on the surface of the giobe may be brought to the one common time-reckoning.

It is a significant fact that at the Washington Conference the principle of Universal Time obtained unanimous recognition from the delegates of so many nationalities. It is a presage that the peoples whom they represent will before long be fully impressed with the belief that a system of reckoning time uniformly throughout the globe is really the one rational system by which it can be noted, and the only system which will meet the demands of the human family in coming years. It is only step by step that a reform so great can be carried out. Moreover, although the difficulties to be overcome are undoubtedly serious, this much may be said with confidence, that they are less formidable than those which have already been conquered. A few years bark the very question of a universal time for all nations was a theor, not only new in itself but it was held by many to be wild and Utopian, and so impracticable as to be unworthy of consideration. In 1879 the subject could not command a hearing at the British Association! Since 1878 the arguments advanced to point out the necessity of change have, however, obtained attention, and a general movement for reform has been inaugurated. Scientific and practical men and learned societies in both hemispleres have taken part in the consideration of the question. It has formed the subject of discussion at International Congresses at Venice and Rome. The President and Congress of the United States have been induced to take decisive action in connection with it. The governments of twenty-five civilized nations have aided in its development. The International Washington Conference itself has greatly promoted the solution of the problem by coming to an nnanimous determination on the essential principles to be observed. In several countries the recommendations of the conference have already in part been acted on, and changes have been effected which a few jears back were not even dreamed of.

If 80 much has been accomplished within the eight years since the scheme of reform was first promulgated, is it too much to expect that the public mind will be prepared in the more advanced communities to accept the final step in a like period 9

In about a dozen years we pass into another century. Is it taking too sanguine a view to suggest that by that time all watious will be willing to accept the change, and that the first day of January in the Twentieth Century may appropriately be inaugurated by the adrption of one uniform system of reckoning time throughout the world?

I learn from the recent lecture of the Astronomer Rojal that the Board of Visiturs of Greenwich Observatory have unanimonsly recommended that, in accordance with the resolutions of the Washington Conference, the Astronomical day should in the English Nantical Almanac be arranged from the year 1891 (the earliest practicable date) to begin at Greenwich midnight, so as to agree with the civil reekoning, and further that steps have been taken to give effect to this recommendation; thus in a fow years this source of confusion to saiiors navigating ships using the Nautical Almanac-embracing at least 70 per cent. of the tonnage of the world-will be removed. The distinguished Russian Astronomer, Struve, has suggested that all astronomers throughout the world should simultaneously abandon Astronomical Time and bring their notation into harmony with the civil reckoning. He further suggests that this reform should be introduced into the publications of observatories at the initial day of the century. In reference to this the Astronomer Royal, Greenwich, says (Uctober, 1885) "it would be intolerable to have a fundamental question of time-reckoning left open for fifteen sears," and urges that the step be taken ten years earlier. Be that as it may with regard to the assimatation of the astronomical and civil notations no one can question that the change of the century is an appropriate period for effecting the complete unification of time, and doing away with all the errors of our present mode of reckoning. Every auxiliary circumstance points to the possibility of that result being attained. The proceedings of the Washington Conference have giveu the movement an immense impulse. Its men!bers have authoritatively recognized the principles on which the new notation may be established. So unimpeachable and simple are these principles as to be within the grasp of the most limited comprehension. In their application we may have to contend against the prejudices engendered by habit and custom, but the principles of reckoning time allopted by the conference are based on truth and they commend themselves to every one of intelligence, as the proper means to meet the admitted emergency. The unanimity with which the standarl hour system was brought into common use in North America is an evidence that the age is sufficiently intelligent to adopt a reform when its advantages are understood. It will doubtless require the lapse of some years to win over those who feel it to be a bounden duty to eling to old institutions and existing customs. Grad.
nally, however, the minds of the great mass of men will becone familiarized with the new ideas and in the end the new system of notation can not fail to prevail. The main obstacles to be overcome are the restraints which tradition imposes and the usages which our ancestors have transmitted to us. But prejudices of this character can be gradually and certainly surmounted, if the true principles of time-reckoning be taught in schools and colleges. In a few years the yonth of today will be moving actors in life, to influence public opinion and so effect an easy escupe from the thraldom of custom. We have therefore good grounds for the belief that, by the dawn of the coming century, the civilized nations may enjoy a system of notation limited to no locality; when the record of the events of history will be unmarked by doubt; when ambiguity in hours and dates will be at an ond; whan every division of time will be concurrent in all longitudes.
These expectations realized, the Washington Conference will have rendered a great servics to mankind. If the reforms of B. O. 46 and A. D. 1582 owed their origin to the dominant necessity of removing confusion in connection with the notations which existed in the then conditions of the human race, in no less degree is another reform demanded by the new conditions which are presented in this age. Obriously the needed change could not be consummated at a more suitable period than at the beginning of the new century, but whether effected at that or an carlier date, a provisiou is made for the change in the conclusions and recommendations of the Washington Oonference-a conference which, representing all civilized nations and having estal. lished the fundamental principles of the new notation, mast be held by future generations to mark an epoch in the annals of the world not less important than those of the reforms of Julins Cexsar and Pope Gregory XIII.

> SUPPLEMENTARY NOTE.

TIME RECKONISG FROM THE PROCEEDINGS ON THE CANADIAN INSTITUTE $1878-79$.
(Extract.)
Persons who inhabit different sections of the earth differ from each other in their reckoning of the day. At one place it is noon, at another it is midnight; at a third It is smarise, at a fourth it is sunset. In consequence we have the elements of confusion, which in voive in some cases the mistake of a whole day.

People even living in the same meridian may differ a day in their noual reckoning of time, according as the countries they inhabit have been colonized from the one side or the other of the globe. There are instances in the Pacifie Ocean where islands almost aljacent reckon ly different daye of the month and week; a ciroumstance calculated to produce mnch confusion when intercourse hecomes frequent.

In Alaska the days of the week and month were one day in advance of those in the adjacent entony of British Columbia, iuded of the whole of America. On the advent of eltizene of the United States a few years ago, whe: that territory was traneferrod by Ruseia, the Saturday was found to be the Sunday of t ', old residents. For ordinary business purposes a clasige became necessary, and a diapensation was granted in 1871 by the dignitaries of the Greek Church in Russia, anthorizing their
missionaries and adherents in Alaska to celc brate Snnday a day later, or on Monday, according to the old reckoning.

The reverse has lieen met in another quarter of the globe. The Philippine Islands, lying between Australia and Asia, and about 100 degrees of longitude to the west of Alaska, were discovered in 1521 by the illustrions Magellan in his memorable first circumnavigation of the globe. That navigator followed the sun in his path around the world. Legaspi succeeded him and took possession of these important islands in the natue of Philip II, King of Spain. Tho Philippine Islauds extend for a thonsand miles from north to south, they embrace Manilla, one of the oldest cities of the Indles, and they contain a population of $5,000,000$. They were colonized, as well as discovered, by Spaniards coming from the Enst; and as a consequence the reckouing of the inhabitants has for more than three centurice remained a day behind the day in British India and the neighboring countrice in Asia.

Travelers who nrrive at New Zealand or the Australian colonies by the San Francisco route meet tho same difference, owing to the fact that the countries in the South Pacifie were colonized from the West. The day of the week and of the month carried from San Francisco never agrces with the day and date reckoned by the inhabitanta at the destination of the steamer.
All travelers who have mado the voyage between America and Asia have experienced the difficulty in reckoning reforred to. Those who have proceeded westward have lost, whilo those who have traveled eastward have gained a day. In Mrs. Brassey's Around the World in the Yacht Sunbeam, this experience is recorded. The journal of that lady passes from Wednesday, Jannary 10, directly to Friday, January 12-Thursday, January 11, having no existence with the travelers.

In sailing across the Pacifie from west to east, one day has to be repeated before landing on the American coast. If, for example, the correction be made on Wednesday, 1st July, there will be two Wednesdays in the one week, and two days of the month dated July 1.

A journey round the world is now an everyday undertaking, and is accomplished with comparative ease. Suppose two travelers set out from a given place, one going eastwardly, the other westwardly. A singular cirenmstance will result when they both return to the common starting point, and the reason is obvious. One man will arrive, accolding to bis reckoning, say on Tuesday, December 31, when in fact at that locality it is Wednesday, Jane r 1 . The other traveler, assuming that he has kept accurately a daily journal, will enter in his diary on precisely the same day, Thursday, January 2. This consequence has been brought out by Edgar Allen Poe, in his amusing story of "Three Sundays in one Wee"." but it no longer can be held to bo an imaginary contingency, since steam communioation by land and water is now affording extraordinary facilities for making the tour of the globe.
To illustrate the diffeulty more particularls. First, let ns seloct points in foar quarters of the globe, each alont 90 degrees apart, say in Japan, Arabia, Newfoundand, and Alaska. If we assume it to be Sunday midnight at the first-mentioned place, it must be noon at the opposite point, Newfoundland, but on what day is it noon 1 Arabia being to the west of Japan, the local time there will be $6 \mathrm{p} . \mathrm{m}$. , on Sunday, and Alaska, lying to the cast of Japan, the time there will be 6 a. m. on Monday. Again, when the clock indicates 6 p. m. on Sunday in Arabia, it must be Sunday noou at a point 90 degrees farther west, or at Newfoundland; when it is $6 \mathrm{a} . \mathrm{m}$. on Mondey in Alaska, it must be noon on Monday 90 degrees farther east, also at Newfondland. Thus, by tracing local time eant and west from a given point to its antipodes, the cluck on the one hand becomes twelve hours alower, on the other hand twelve hours faster. In the case in point, while it is midnight on Sunday in Japan, at precisely the same moment it is noon at Newfonudland on two distiact days, viz, on Sunday and on Monday.
Secondly, let as trace local time only in one direction around the earth. The day coss not begin everywhere at the same moment., Its commencement travels from
east to west with the sun, as the earth cevolves in the opposite direction, and it takes an entire revolution of the globe on its axis for the day everywhere to be entered on. Immediately on the completion of one revolntion the inception of any one day ends, and at this moment the end of the day begins; and the globe must make another complete revolution before the end of the day entirely finishes. The globe must in fact make two entire revolutions before any one week day runs out, consequently each aud every day of the rweek rans over forty-eight hours; and, taking the whole globe into account, two oivil days always co-exist. The first twenty-four hours of one day co-exist with the last twenty-four hours of its predecessor, while the remaining twenty-four hours co-exist with the first twenty-four hours of the day which follows.

It is difficult to accept the fact that any one day lasts more than tisenty-four hours; but it can be demonstrated that it is the case. Let us place together several maps of the world on Mercator's "Projection," so as to represent, in consecutive order, each part of the earth's surface as it passes the sun during several diurnal revolutions. (See plate).
$A A^{1}, A^{1} A^{2}$, are intended to represent eacis as complete map of the world. Within each of these limits every place on the earth's surface is bronght under the sunduring a daily revolution.

The vertical lines $E I N R V$ represent meridians, for the sa ke of simplicity selected 60 degrees apart, and the stars or dots at their iutersection denote the beginning and end of a day on each of the six meridians. As the earth revoli es, the sun passees successively the meridians of those localities, with an interval of four hours elapsing between each.

Let us assure it to be 12 o'clock miduight on Thorsday at meridian A. At that moment anc at that place Friday begins and runs for twenty-four hoars, or on the diagram frora A to \boldsymbol{A}^{1}.

Four hovis later Friday begins on meridian E, and runs four hours on the socond map, or into the second revolution of the earth. Four hours still later Friday begins on meridian I and rans eight on the second map or into the second revolution. This goes on from spot to spot, until at last the commencement of Friday reaches the last meridian, and at that point Friday runs entirely across the second map to A^{2}. Thas Friday begins at A, runs during two complete revolntions of the earth, as shown on the map from A to A^{2}.

The diagram will thus illustrate the duration of every 'lay in the week, and it becomes obvious, when wo take general view of the whole globe on any given day, say Saturday, that day begins in the middle of Friday and does not eud until the middle of Sunday. Friday, on the other hand, beginning in the middle of Tiursday, runs into the middle of Saturday, while Sunday commences at the moment Friday ends. To state the case differently: the same moment of absolute timo which is part of Saturday in one place, is equally part of Friday and of Sunday in some other places east and west.

It is a preconceived idea with many that there is a simultaneons Sunday over the earth, and that Christians in every meridian keep the Lord's day at one and the same time. Facts, howerer, establish that this is mistake. From its first commencement to its final ending, the Sunday extends over forty-eight hours. Indeed, if we take into account the remarkabie circumstance mentioned with regard to Alaaka and the Philippine Jsiands, Sunday has been diseovered to z un over some fifty-five hours. The same may be said of any day in the week; and as a consequence we have, taking the whole globe into viow, Saturday and Monday running over the intervening Sunday to overlap each other about seven hours. We have, in fact as a constant occur rence, ;-rtions of three consecutive daye co-existent.

From the faet that not oniy are the hours of the day different in every meridian, but that differeut daye are constantly in progreen on the face of the giobe, it is a diffoult matter under our present system of reckoning to assign relatively the hour and

day when events take place. We may learn of an occurrence, and the time assigned will be correet in the meridiau of the loeality. Everywhere else it will be inaccurate. Indeed, if the fact of the occurrence be transmitted over the world by telegraph, it may, in soma places, be recorded on different days." If the incident occurs at the close of $\boldsymbol{r} r \quad$, or a year, it mayactually take place in tiro different months, or two distinct ge
Under ou . ssent system it is quite possible for two events to take place several hours apart, the first and older ocenrring in the new year in one locality; the second, although the mors rucent in absolute time, falling, in another locality, within the oh year. The aame may be said of events that occur during the peri 3 which elapses when one century merges into another. In one part of the globe the sume event may transpire in the nineteenth century, while in another it falls within the twentieth century.
Another diffcults, forced on the attention by the science of the century, is maicly due to the ageney of electricity, employed as a means of telegraphy, and to steam applied to locomotives. These extracrdinary sister agencies having revolutionized the relation of distance and time, having bridged space, and diawn into closer affinity portions of the earth's surface previonsly separated by long and, in some cases, inaceessible distances.
Let us take the case of a traveler in North America. He lands at Ifalifax in Nova Seotia, and starts by a railway to Chicago throngh the eastern portions of Canala. His route is over the Intercolonial, the Grand Trunk, and other lines. He stops at St. John, Quebec, Montreal, Ottawa, Toronto, Hamilton, and Detroit. At the beginning of the journey he sets his watch by Halifax time. As he reaches each place in succession, he finds a considerable variation in the clocks by which the trains are run, and be diseovers that at no two places is the same time ased. Between Halifax and Chieago he finds the railways obsirving nc less than seven difforent standards of time. If the traveller remains at any one of the cilles referred to, he must alter his watch to avoid inconvenience, and perhaps not a few disappointments aud annoyances to himself and others. If, however, he shonld not alter his watch, he would discover on reaching Chicago that it was an hour and thirty-five minutes faster than the clocks and watches in that city.
If lis journey be made by one of the routes throngh the Uuited States, the variation in time and its inconveniences will not be less. If he extends his journey west of Chicago, traveling from place to place until he reaches San Frauciseo, he will meet continnal change, and finally discovers a loss in time of nearly four hours $(3 \mathrm{~h} .56 \mathrm{~m}$.). Between the extreme points there are many standaris of time, each eity or place of importance generally being governed by its own meridian. Hence the discrepancies which perplex the traveler in moving from place to place.
On the continent of Europe, and indeed wherever lines of communication extend between pointe differing to any considerable extent in longitude, the same diffculty is experienced. On a jonmey from Paris to Vienna or to St. Petersburg, the standard time employed by the railways changes frequently, and the extreme difference in time between the first and last eity is nearly two hours. As railways and telegraphs are extended in Rnssia, the inconveniences will become of serious importance in that conntry. Within the limits of Russia in Europe and Asia, the extreme variations of time is about t welve hours.
Suppose we take'the case of a person traveling from London to India. He starts with Green wich time, but he scarcely leaves the shores of England when he finds his wateh no longer right. Paris time is used for the journey until that of Rome becomes the standard. At Brindisi there is another change. Up the Mediterranean ships' time is used. At Alexanilria Egrplian time is the standard. At Suez, elips'

[^3](and
time is resumed, and continues, with dally changes, until India is reached. Arriving at Bombay, the traveler will find two standards employed, local time and railway time, the latter belng that of Madras. If he has not altered his watch since he left England, he will find it some five hours slow. Should he continuc his journey to Ching, it will have fallen eight hours behind.

In the United Kinglom the diffeulties due to longitude are only felt in a modified form. The greater island, embraciug England and Scotland, is comparatively limited in width; ousstandard of time is therefore used. It is only in respect to the sister island, Ireland, that the difference in longitude calls for a difference in time. In the whole United Kingdon, consequently, there are practically only two standards, viz. Greenwich time and Irish time, the difference boing twenty-fiv- minutes. No one, therefore, whose experiouce has been confined to the United Kingdom, can form an adequate idea of the extent of the inconvenience arising from the causes alluded to, where geographical circumstances ronder necessary the use of a multiplicity of atandards.

The railway ayatem is the principal agent in the developing of the difficalties referred to, and the still further oxtension of steam communications in great continental liues is forcing the subject on public attention. Canada snpplies a good iliustration of what is oecurring. The railways built and projected will extend from the eastern coast of Newfoundland on the Atlantic to the western coast of British Colaubia on the Pacific, embracing about 75° of longitude. Every Canadian city has its own lime. Innumerable settlements are now leing formed througbont the country ultimately to be traversed by railways; and in a few years scores of populous towns and cities will spring up in the now uninhabited territories between the two oceans. Each of these places will have its own local time, and the difference between the clocks ut the two extremes of Canada will be fully tiv hours. The diffenlties which will ultimately arise from this state of things are apparent. They are already in some degree felt, they are year by year increasing, and will at no distant day become seriously incourenient. This is the case not in Canada alone, but all the world over.

The division of the day into two halves, each containing twelve hours, and each fumbered from 1 to 19 , is also a fertile source of error and inconvenience.
Travelers who have had occasion to consult railway guides and steam-boat timetables will be familiar with the inconvenience resulting from this canse; none know better liy experience how much the divisions ante meridian and post meridian have baffled their inquiries, and how often these arbitrary divisions have led to mistakes. Were it uecessary, innumerable instances could be given. The evil, however, is one mor familiar that it has conie to be looked upon as unavoidable, and is, as a matter of course, silently endured.

The halving of the day has doubtless long been in use, but beyond ita claim to antiquity, is a custom that confers not a single benefit, and is marked by nothing to recommend it.

sCIEME OF COSMIC OR UNIVERSAL TIME.

1. That a system of universal time be established, with the view of facilitating synchronous scientific observations, for chronological reckonings, for the purpose of trade and commerce by eea and land, and for all such uses to which it is applicable.
2. That the system be established for the common observance of all peoples, and of such a character that it may be adopted by each aeparate community, as may bo found expedient.
3. That the system be based on the principle that for all terrestrial time-reekoninge there be one recognized anit of meusurement only, and that all measured intervale of time be direetly related to the one-muit measure.
4. That the unit measure be the period occupied by the diurnal revolntion of the earth, defined by the mean solar pussage at the meridian twelve hours from the prims meridian established through Greenwich.
5. That the unit measure defined as above be held to be a day absolnte, and designated a cosmlo day.
6. That such cosmic day be held.as the chronological date of the earth, ohanging with the mean solar paseage at the anti-meridian of Greenwich.
7. That all divisions and multiples of the cosmic day be known as cosmio time.
8. That the cosmio day be divided into hours, numbered in a aingle series, one to twenty-four (1 to 24), and that the hours be subdivided, as ordinary hours, into minutes and seconds.

Note.-As an alternative means of distinguishing the cosmic hours from the hours in local reckoninge, they may be denoted by the letters of the alphabet, which, omitting I and V, are twenty-four in nnmber.
9. That until cosmis time be accepted as the recognized means of reckoning in the ordinary affairs of life, it is advisable to assimilate the system to present usages, and to provide for the easy translation of local reckoninge into cosmio time, and vice versa; that, therefore, in theory, and as closely as possible in practice, local reckonings be based on a known interval in advance or behind cormic time.
10. That the anrface of the globe be divided by twenty-four equi-distant bour-meridians, corresponding with the hours of the cosmio day.
11. That, as far as practicable, the eeveral hour-meridians be taken according to the longitude of the locality, to regulate local reckonings, in a manner simiar to the aystem in use throughout North America.
12. That in all cases where an hour-meridian is adopted as the standard for regulating local reckonings in a particular section or distriot, the civil day shall be held to commence twelve hours before, and end twelve hours after, the mean solar passage of auch hour meridian.
13. That the civil day, based on the prime meridian of Greenwich, shall colncide and be one with the cosmic day. That civil days on meridians east of Greenwich shall be (according to the longitude) a known number of hours, or hours and minutes, in advance of cosmic time, and to the west of Greenwich the contrary.
14. That the surface of the globe being divided by twenty-four equi-distant meridlans (fifteen degrees apart) corresponding with the honrs of the cosmic day, it is advisable that longitude be reckoned according to these honr-meridians.
15. That divisions of longitude less than an hour (fifteen degrees) be reckoned in minutes and seconds and parts of seconds.
16. That longitude be reckoned continuously to wards the west, beginning with zero at the anti-prime meridian, twelve hours from Green wich.
17. That longitnde generally be denoted by the same terms as those applied to coomic time.

[^0]: - Time-reckonin \boldsymbol{y} and the solection of a prime meridian to be common to all nationa. By Sandford Floming.

[^1]: *The Nantical Alinanac defines an ordinaty solar day to be the interval of time between the departure of any meridian from the sun and its succeoding return to it.

[^2]: *At midsummer, 1886, the Canadian Pacific Railway was opened from the Atlantio to the Pacifie and the $\mathbf{2 4}$-hour system went into force in rnnning "through" trains. The example set by the railway company has been followed in the towns and villagen along the line, and the inhabitants generally having experienced the advantages of the c^{3} ange, no desire is expressed in any quarter to return to the old usage.
 \dagger The following foot-note is added: "It is proposed to adapt clocks and watches now in use to the change, by having inscribed on the existing dials the new numbers of the afternoon hours-thirteen to twenty-four (13 to 24) inclusive. The only practical difficulty to be overcome is met by the simple expedient of placing on the face of the watch or clock a supplementary dial, showing the new afternoon hours in Arabio numerals within the present Roman figures. The supplementary dial must be of thin material, and it has been found that, by being made simply of paper and secured to its position by any gum which will adhere to an enammeled surface, the object is attained without any further alteration of the watch or clock. Thecommittee is aware that these seem trifling matters to bring nnder the notice of the convention, but questions of great moment not seldom hinge on amall details. It is evident, from what has been set forth, that evers person in the community may, at the cost of a few cents in each case, adapt his watch to the 24 -hour system. The committee accordingly repeat their conviction that, with the disappearance of the only practical difficulty at an insignificant oost, there is nothing to prevent the railway anthorities and the community at large adopting the change as soon as they becomn alive to its ad-vantages."-Report of the Buffalo Convention of the American Society of Civil Engineers.

[^3]: "Time and the Trlegrapit-A message dated Simla, 1.55 a. m. Weduesday, was received in London at $11.47 \mathrm{p} . \mathrm{m}$. on Tnesday. As the clerk said, with pardonable confusion, "Why, this message was sent off to-ulorrow."-Times.

